Московский Государственный Университет имени М. В. Ломоносова Физический факультет Кафедра физики частиц и космологии

Оптимизация поиска частиц новой физики при помощи электромагнитных резонаторов

Сальников Дмитрий студент 2 курса магистратуры физического факультета МГУ имени М.В. Ломоносова

научный руководитель: кандидат физ.-мат. наук, с.н.с. ОТФ ИЯИ РАН Сатунин Пётр Сергеевич

25мая 2023 года

Введение

- Аксион и аксионоподобная частица гипотетические псевдоскалярные частицы. Электрически нейтральные, массивные (масса m_a).
- Аксион как решение сильной СР-проблемы в КХД [Рессеі-Quinn, 1977].
- Аксион и аксионоподобные частицы составляющие тёмной материи [Preskill, Abbott, Dine, 1982].
- Взаимодействие с электромагнитным полем

для аксиона КХД масса и константа взаимодействия связаны: $g_{a\gamma\gamma} = 10^{-10} \, \Gamma$ эВ⁻¹ $\left(\frac{m_a}{1 \, \text{sB}}\right)$, для аксионоподобных частиц независимы.

Текущие ограничения

Рисунок 1 - Текущие ограничения на параметры $(m_a, g_{a\gamma\gamma})$ для аксионоподобных частиц и аксионов КХД

Схема экспериментальной модели

Рисунок 2 - Схема экспериментальной модели в случае двух расположений: коаксиального (слева), параллельного (справа).

Тип резонатора	B_0	$B_{\rm ext}$	Q	P
RF	0.01 Тл	3 Тл	10^{5}	100 кВт
SRF	0.1 Тл	-	10^{10}	0.1 кВт

Таблица 1 - Сравнение характеристик нормально проводящего радиочастотного резонатора (RF) и сверхпроводящего радиочастотного резонатора (SRF)

Чувствительность установки

• Амплитуда сигнальной моды

$$G = iQ_{\rm rec}g_{a\gamma\gamma}^2 E_0^{\rm em} B_0^{\rm em} B_0^{\rm rec} V_{\rm em} \mathcal{G}/d, \qquad (1)$$

$$\mathcal{G} = \int_{V_{\rm rec}} \frac{d^3 x}{V_{\rm rec}} \int_{V_{\rm em}} \frac{d^3 x'}{V_{\rm em}} \left(\vec{\mathcal{E}} \cdot \vec{\mathcal{B}}\right)^* (\vec{x}) \left(\vec{\mathcal{E}} \cdot \vec{\mathcal{B}}\right) (\vec{x}') \frac{e^{i\sqrt{\omega_a^2 - m_a^2}|\vec{x} - \vec{x}'|}}{4\pi} \frac{d}{|\vec{x} - \vec{x}'|} .$$
(2)

• RF:
$$\omega_a = \omega_0, \ (\vec{\mathcal{E}} \cdot \vec{\mathcal{B}}) = (\vec{\mathcal{E}}_0 \cdot \vec{\mathcal{B}}_{ext})$$

- SRF: $\omega_a = \omega_1 + \omega_2, \ (\vec{\mathcal{E}} \cdot \vec{\mathcal{B}}) = \frac{1}{2} (\vec{\mathcal{E}}_1 \cdot \vec{\mathcal{B}}_2 + \vec{\mathcal{E}}_2 \cdot \vec{\mathcal{B}}_1).$
- Из радиометрического уравнения SNR = $\frac{P_{\text{signal}}}{P_{\text{noise}}} \cdot \sqrt{t\Delta\nu}$, где $P_{\text{noise}} = T\Delta\nu$ мощность тепловых шумов, находим чувствительность

$$g_{a\gamma\gamma} = \left[\frac{2d^2T\,\text{SNR}}{\omega_s Q_{\text{rec}} E_{0,\text{em}}^2 B_{0,\text{rec}}^2 V_{\text{em}}^2 V_{\text{rec}} |\mathcal{G}|^2}\right]^{\frac{1}{4}} \left(\frac{\Delta\nu}{t}\right)^{\frac{1}{8}}, \quad (3)$$
где $\Delta\nu = \frac{\nu_s}{Q_{\text{rec}}}$ либо $\Delta\nu = \frac{1}{t}$ [Bogorad, 2019]

5/12

Чувствительность RF + RF схемы

Рисунок 3 - Зависимость чувствительности $g_{a\gamma\gamma}$ для RF+RF схемы от отношения R/L для случаев $m_a = \omega_a$ и $m_a = 0$ (слева) и от массы при оптимальном отношении R/L (справа) для коаксиального и параллельного расположений. Объём резонаторов фиксированный $V = 1 \text{ м}^3$, расстояние между стенками резонаторов $\delta = 0.5 \text{ м}$, мода TM_{010} , время измерений $t = 10^6 \text{ с.}$

Чувствительность SRF + SRF схемы

Рисунок 4 - Зависимость чувствительности $g_{a\gamma\gamma}$ для SRF+SRF схемы от отношения R/L для случаев $m_a = \omega_a$ и $m_a = 0$ (слева) и от массы при оптимальном отношении R/L (справа) для коаксиального и параллельного расположений. Объём резонаторов фиксированный $V = 1 \text{ м}^3$, расстояние между стенками резонаторов $\delta = 0.5 \text{ м}$, моды накачки эмиттера $\text{TM}_{010} + \text{TE}_{011}$, мода накачки ресивера TM_{010} , сигнальная мода ресивера TE_{011} , время измерений $t = 10^6 \text{ c.}$

7/12

Чувствительность SRF + RF схемы

Рисунок 5 - Зависимость чувствительности $g_{a\gamma\gamma}$ для SRF+RF схемы от отношения R/L для случаев $m_a = \omega_a$ и $m_a = 0$ (слева) и от массы при оптимальном отношении R/L (справа) для коаксиального и параллельного расположений. Объём эмиттера фиксированный $V = 1 \text{ м}^3$, расстояние между стенками резонаторов $\delta = 0.5 \text{ м}$, моды накачки эмиттера TM_{010} +TE₀₁₁, сигнальная мода ресивера TM_{010} , время измерений $t = 10^6 \text{ с.}$

Чувствительность RF + SRF схемы

Рисунок 6 - Зависимость чувствительности $g_{a\gamma\gamma}$ для RF+SRF схемы от отношения R/L для случаев $m_a = \omega_a$ и $m_a = 0$ (слева) и от массы при оптимальном отношении R/L (справа) для коаксиального и параллельного расположений. Объём ресивера фиксированный $V = 1 \text{ м}^3$, расстояние между стенками резонаторов $\delta = 0.5 \text{ м}$, мода накачки эмиттера TM_{010} , мода накачки ресивера TM_{010} , сигнальная мода ресивера TE_{011} , время измерений $t = 10^6$ с.

Результаты

Тип схемы	$B_0^{{ m em},(1)}$	$B_0^{{ m em},(2)}$	$B_0^{\rm rec}$	$Q_{\rm rec}$	$P_{\rm em}$	$ \mathcal{G} $	$g_{a\gamma\gamma}$
RF+RF	0.01 Тл	3 Тл	3 Тл	10^{5}	100 кВт	10^{-2}	$3 \times 10^{-11} \Gamma \Im B^{-1}$
SRF+SRF	0.1 Тл	0.1 Тл	0.1 Тл	10^{10}	0.1 кВт	10^{-3}	$5 \times 10^{-11} \Gamma m s B^{-1}$
SRF+RF	0.1 Тл	0.1 Тл	3 Тл	10^{5}	0.1 кВт	10^{-3}	$3 \times 10^{-10} \Gamma \Im B^{-1}$
RF+SRF	0.01 Тл	3 Тл	0.1 Тл	10^{10}	100 кВт	10^{-3}	$9 \times 10^{-11} \Gamma \Im B^{-1}$

Таблица 2 - Сравнение характеристик для различных экспериментальных схем. Геометрический форм-фактор $|\mathcal{G}|$ и чувствительность $g_{a\gamma\gamma}$ представлены для наилучшего отношения R/L коаксиального расположения и массы $m_a \lesssim \omega_a/2$

Выводы

- RF+RF и SRF+SRF схемы дают схожие чувствительности $g_{a\gamma\gamma} \simeq (3-5) \times 10^{-11} \Gamma$ эВ⁻¹, смешанные типы схем дают меньшую чувствительность.
- Наиболее оптимальное расположение коаксиальное с отношением $R/L\simeq 1.6$
- Узкая ширина спектра Δν = 1/t является ключевым фактором для улучшения чувствительности
- Недостатки схем
 - RF+RF: высокая мощность эмиттера;
 - SRF+SRF: сложнее выделить сигнал на фоне моды накачки.

Спасибо за внимание!

