Стандартные свечи на космологических расстояниях

Курсовая работа студента 206 группы Дьяченко Артёма Андреевича Научный руководитель: член-корр. РАН, доктор физ.-мат. наук, Горбунов Дмитрий Сергеевич

Стандартные свечи – астрономические объекты с известной светимостью.

Для того, чтобы узнать о расширении вселенной и природе тёмной материи исследуют зависимость расстояния до объекта от красного смещения.

Ранее, для работы с большими диапазонами использовалось приближение фотометрического расстояния по логарифмам:

$$d_L^{\log poly} = \ln(10) \frac{c}{H_0} \sum_{i=1}^n a_i [\log(1+z)]^i$$

 $a_1 = 1$

 $a_2 \dots a_n$ - независимые параметры

Рисунок 1. Диаграмма Хаббла для сверхновых (голубые точки) и квазаров (желтые точки и синие звёзды). Фиолетовая пунктирная линия – Λ CDM с $\Omega_m = 0.31 \pm 0.05$. Черная сплошная линия – наилучшая аппроксимация логарифмическим многочленом 3 степени.

Рисунок 2. Сравнение космологических моделей, и аппроксимации логарифмами. Закрашенные контуры – доверительные интервалы в 1, 2, 3 и 4σ, полученные в ходе аппроксимации всей Диаграммы Хаббла. Не закрашенные контуры – доверительные интервалы полученные в ходе аппроксимации объектов с z < 1.4

Рисунок 3. Доверительные интервалы, полученные в ходе аппроксимации фиктивных данных, соответствующих Λ CDM с $\Omega_m = 0.9$. Красный участок кривой не попадает в доверительные интервалы даже в том случае, когда данные соответствуют Λ CDM.

Постановка задачи

- Используя разложения по логарифмам нельзя правильно узнать космологические параметры даже в том случае, когда исходные данные полностью им соответствуют.
- Результатам, полученным на основе этого разложения, нельзя доверять, так как ошибка, вызванная самими разложением, может быть неверно интерпретирована как отклонение от ACDM.
- Необходимо найти другое приближение.

Фотометрическое расстояние можно аппроксимировать с помощью ряда многочленов Чебышёва

Эти многочлены ортогональны на сегменте [—1; 1] с весовой функцией

$$w(x) = \frac{1}{\sqrt{1 - x^2}}$$

Скалярное произведение:

$$\langle f,g\rangle = \int_{-1}^{1} \frac{fg}{\sqrt{1-x^2}} dx$$

Новый подход

Для того, чтобы аппроксимировать функцию на сегменте [0; *u*], нужно отобразить [-1; 1] на этот сегмент при помощи функции

$$y(x) = \frac{u}{2}(x+1)$$

Новый подход

Тогда коэффициенты c_i считаются по формулам:

$$c_0 = \langle d_L(y(x)), T_0(x) \rangle \frac{1}{\pi}$$

1

$$c_k = \langle d_L(y(x)), T_i(x) \rangle \frac{2}{\pi}, k > 0$$

Новый подход

 Так как при вычислении коэффициентов интеграл брался для d_L(y(x)), где x ∈ [−1,1], необходимо использовать многочлены Чебышева относительно функции:

$$x(y) = \frac{2x - u}{u}$$

• d_L можно аппроксимировать рядом :

$$d_L^{approx} = \sum_{i=0}^n c_i T_i \left(\frac{2z-u}{u}\right)$$

- Чтобы убедится в том, что моё приближение можно использовать для анализа, его можно проверить аппроксимацией фиктивных данных, симулирующих зависимость модуля расстояния от z в ΛСDМ при различных значениях параметра Ω_m (Ω_m=0.1 и Ω_m=0.5, при H₀ = 70 км/с/Мпк)
- Зависимость модуля расстояния от фотометрического расстояния:

$$\mu = 25 + 5 \log\left(\frac{d_l}{M\pi\kappa}\right)$$

- Квазары будут распределены в промежутке *z* ∈ [0.04; 5.098] (изза этого *u* = 5.098) с шагом 0.003, относительная погрешность Δµ/µ = 1%
- Сверхновые будут распределены в промежутке z ∈ [0.01; 2.254] с шагом 0.004, относительная погрешность Δµ/µ = 0.5%.
- Значения μ случайные числа сгенерированные по закону нормального распределения с математическим ожиданием μ(z_i) и стандартным отклонением Δμ.

Рисунок 5. Фиктивные данные для ACDM при $\Omega_m = 0.1$ (слева) и $\Omega_m = 0.5$ (справа)

Фиктивные данные	<i>H</i> ₀ (км/с/Мпк)	Ω_m
$\Omega_m = 0.1$	70.2 ± 0.7	0.099 ± 0.005
$\Omega_m = 0.5$	70.0 ± 1.0	0.495 ± 0.026

Таблица 1 - результат аппроксимации фиктивной диаграммы Хаббла

Данные хорошо согласуются с Λ CDM. Далее, эти же наборы данных будут аппроксимироваться d_L^{approx} .

	ACDM: $\Omega_m = 0.1$;	Аппроксимация
	<i>H</i> ₀ = 70 км/с/Мпк	
c ₀	0.1005	0.1005 ± 0.0008
c ₁	0.1141	0.1141 ± 0.0014
C ₂	0.0101	0.0102 ± 0.0012
C ₃	-0.0026	-0.0024 ± 0.0011
C ₄	0.00068	0.0007 ± 0.0008
C ₅	-0.00013	-0.00020 ± 0.00028

Таблица 2. коэффициенты ряда Чебышева при $arOmega_m=0.1$

Рисунок 6. Доверительные интервалы в 1σ, соответствующие аппроксимации фиктивных данных при $\Omega_m = 0.1$. Черная кривая – параметрическая кривая связывающая коэффициенты c_i, c_j в ΛCDM при значении постоянной Хаббла из таблицы 1.Черная точка соответствует значениям коэффициентов при космологических параметрах из таблицы 1.

$$f(\widehat{\Omega}_m, \widehat{H}_0) = \sum_{i=0}^{5} \frac{\left(\widehat{c}_i - c_i(\widehat{\Omega}_m, \widehat{H}_0)\right)^2}{\sigma_i^2}$$

Минимум $f(\widehat{\Omega}_m, \widehat{H}_0)$ при $\Omega_m = 0.1$ достигается при:

$$\widehat{\Omega}_m = 0.0985$$
 $\widehat{H}_0 = 70.3142$ км/с/Мпк

	ACDM: $\Omega_m = 0.5$;	Аппроксимация
	<i>H</i> ₀ = 70 км/с/Мпк	
c ₀	0.0631	0.0633 ± 0.0005
c ₁	0.0679	0.0680 ± 0.0009
c ₂	0.0035	0.0035 ± 0.0008
c ₃	-0.00088	-0.0006 ± 0.0007
C ₄	0.00029	0.0005 ± 0.0005
c ₅	-0.00010	-0.00011 ± 0.00020

Таблица 3 коэффициенты ряда Чебышева при $arOmega_m=0.5$

Рисунок 7. Доверительные интервалы в 1
о, соответствующие аппроксимации фиктивных данных при
 $\Omega_m=0.5.$

$$f(\widehat{\Omega}_m, \widehat{H}_0) = \sum_{i=0}^{5} \frac{\left(\widehat{c}_i - c_i(\widehat{\Omega}_m, \widehat{H}_0)\right)^2}{\sigma_i^2}$$

Минимум $f(\widehat{\Omega}_m, \widehat{H}_0)$ при $\Omega_m = 0.5$ достигается при:

$$\hat{\Omega}_m = 0.5020$$
 $\hat{H}_0 = 69.7245$ км/с/Мпк

$$d_{L}^{\log poly} = \ln(10) \frac{c}{H_{0}} \sum_{n=1}^{5} a_{n} [\log(1+z)]^{n}$$

$$a_{2} = \ln(10) \left(\frac{3}{2} - \frac{3}{4}\Omega_{m}\right), \qquad a_{3} = \ln(10)^{2} \left(\frac{9}{8}\Omega_{m}^{2} - 2\Omega_{m} + \frac{7}{6}\right),$$

$$a_{4} = \ln(10)^{3} \left(-\frac{135}{64}\Omega_{m}^{3} + \frac{9}{2}\Omega_{m}^{2} - \frac{47}{16}\Omega_{m} + \frac{5}{8}\right),$$

$$a_{5} = \ln(10)^{4} \left(\frac{31}{120} - \frac{25}{8}\Omega_{m} + \frac{315}{32}\Omega_{m}^{2} - \frac{729}{64}\Omega_{m}^{3} + \frac{567}{128}\Omega_{m}^{4}\right)$$

	АСDM: $\Omega_m = 0.1; H_0 = 70 \text{ км/с/Мпк}$	Аппроксимация
H ₀	70	68.2 ± 2.8
<i>a</i> ₂	3.28	2.1 ± 0.9
<i>a</i> ₃	5.18	13 ± 5
<i>a</i> ₄	4.57	-13 ± 7
a_5	0.94	10 ± 7

Таблица 4. Коэффициенты ряда Тейлора и постоянная Хаббла при $arOmega_m=0.1$

	АСDM: $\Omega_m = 0.1; H_0 = 70 \text{ км/с/Мпк}$	Аппроксимация
H ₀	70	69.3 ± 2.7
<i>a</i> ₂	1.90	2.3 ± 0.8
<i>a</i> ₃	1.47	4 ± 4
<i>a</i> ₄	1.08	-3 ± 9
<i>a</i> ₅	0.61	3 ± 6

Таблица 4. Коэффициенты ряда Тейлора и постоянная Хаббла при $arOmega_m=0.5$

$$f(\widehat{\Omega}_m) = \sum_{i=2}^{5} \frac{\left(\widehat{a}_i - a_i(\widehat{\Omega}_m)\right)^2}{\sigma_i^2}$$

Минимум $f(\hat{\varOmega}_m)$ достигается при $\hat{\varOmega}_m=0.0164$ для $\varOmega_m=0.1$, и при $\hat{\varOmega}_m=0.6$ для $\varOmega_m=0.1$

Заключение

- В работе было предложено новое приближение для космографического анализа.
- Выполнена проверка на модельную независимость путём аппроксимации фиктивной диаграммы Хаббла.
- Полученные значения коэффициентов и оценки параметров совпадают с теми, которые должны получится теоретически даже в том случае, когда разложение ведёт себя хуже всего (Ω_m = 0.5). Следовательно, это приближение лучше используемого ранее разложения по логарифмам.