Московский Государственный Университет имени М.В.Ломоносова Физический факультет

Гравитационное линзирование

Выполнил: ст. гр. 202 Н.М.Хабаров Руководитель: Член-корр. РАН, Д.С.Горбунов

> Москва 2024

Получить радиальные профили следующих физических величин в кластере галактик:

1)Температура

2)Давление электронов

3)Концентрация электронов

4)Плотность темной материи

5)Гравитационный потенциал

6)Потенциал отклонения

1)Выбор кластера галактик (Abell 85 (z=0.055))

2)Профиль параметра комптонизации из наблюдений Planck и ACT
3)Профиль температуры и ∫ n_e²dV из наблюдений XMM-Newton
4)Аппроксимация независимых наблюдений с помощью профиля gNFW

5)Уточнение параметров профиля gNFW

6)Определение профиля гравитационного потенциала и потенциала отклонения с полученными параметрами

Вывод уравнения гравитационной линзы (основные моменты)

$$G^{\alpha\beta} := R^{\alpha\beta} - \frac{1}{2}Rg^{\alpha\beta} = \frac{8\pi G}{C^4}T^{\alpha\beta}$$
(1)

$$T^{\alpha\beta} = (\rho c^2 + p) U^{\alpha} U^{\beta} - p g^{\alpha\beta}$$
⁽²⁾

$$g_{\alpha\beta} = (1 - \frac{1}{2}h)\eta_{\alpha\beta} + h_{\alpha\beta}$$
(3)

$$(\Delta - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}) h^{\alpha\beta} = \frac{16\pi G}{c^4} T^{\alpha\beta}$$
(4)

$$h^{\alpha\beta}(t,\vec{x}) = \frac{-4G}{c^4} \int \frac{T^{\alpha\beta}(t-\frac{\vec{y}}{c},\vec{x}+\vec{y})}{|\vec{y}|} d^3y$$
(5)

Вывод уравнения гравитационной линзы (продолжение)

$$U(t, \vec{x}) := -G \int \frac{\rho(t - \frac{|\vec{y}|}{c}, \vec{x} + \vec{y})}{|\vec{y}|} d^{3}y;$$

$$\vec{V}(t, \vec{x}) = -G \int \frac{(\rho \vec{v})(t - \frac{|\vec{y}|}{c}, \vec{x} + \vec{y})}{|\vec{y}|} d^{3}y$$
(6)
(7)

$$ds^{2} = g_{\alpha\beta}dx^{\alpha}dx^{\beta} = (1 + \frac{2U}{c^{2}})c^{2}dt^{2} - 8cdt\frac{\vec{V}dx}{c^{3}} - (1 - \frac{2U}{c^{2}})d\vec{x}^{2}$$
(8)

 \rightarrow

$$U(t,\vec{x}) := -G \int \frac{\rho(t,\vec{x}+\vec{y})}{|\vec{y}|} d^3 y;$$
(9)

$$\vec{V}(t,\vec{x}) = -G \int \frac{(\rho \vec{v})(t,\vec{x}+\vec{y})}{|\vec{y}|} d^3y$$
(10)

Вывод уравнения гравитационной линзы (продолжение)

$$ds^{2} = e^{2U}(dt - \omega_{i}dx^{i})^{2} - e^{-2U}dl^{2}$$
(11)

Эффективный показатель преломления

$$n = e^{-2U} + \frac{\omega_i dx'}{dl} \tag{12}$$

$$n = 1 - \frac{2U}{c^2} + \frac{4}{c^3} (\vec{V}\vec{e})$$
(13)

$$\frac{d\vec{e}}{dl} = -\frac{2}{c^2}\nabla_{\perp}U + \frac{4}{c^3}[\vec{e}, (\nabla, \vec{V})] \tag{14}$$

$$\vec{\hat{\alpha}} = \int \frac{2}{c^2} \nabla_{\perp} U dl - \int \frac{4}{c^3} [\vec{e}, (\nabla, \vec{V})] dl$$
(15)

Вывод уравнения гравитационной линзы (продолжение)

$$\hat{\hat{\alpha}} = \frac{4GM}{C^2} \frac{\xi}{|\vec{\xi}|^2} \tag{16}$$

$$\vec{\hat{\alpha}}(\vec{\xi}) = \frac{4G}{c^2} \int_{R^2} \frac{(\vec{\xi} - \vec{\xi'})\Sigma(\vec{\xi'})}{|\vec{\xi} - \vec{\xi'}|^2} d^2\xi'$$
(17)

$$t = c^{-1} \int (1 - \frac{2U}{c^2}) dl = c^{-1}l - 2c^{-3} \int U dl$$
(18)

$$-\frac{2}{c^3}\int Udl = -\frac{4G}{c^3}\int d^2\xi' \Sigma(\vec{\xi'})(ln\frac{|\vec{\xi}-\vec{\xi'}|}{D'}) + const$$
(19)
$$c\Delta t = \hat{\phi}(\vec{\xi},\vec{\eta}) + const$$
(20)

 \rightarrow

Уравнение гравитационной линзы. Время запаздывания

$$\hat{\phi}(\vec{\xi},\vec{\eta}) = \frac{D_d D_s}{2D_{ds}} (\frac{\vec{\xi}}{D_d} - \frac{\vec{\eta}}{D_s})^2 - \hat{\psi}(\vec{\xi})$$
(21)

$$\hat{\psi}(\vec{\xi}) = \frac{4G}{c^2} \int d^2 \xi' \Sigma(\vec{\xi'}) (ln \frac{|\vec{\xi} - \vec{\xi'}|}{\xi_0})$$
(22)

$$\psi(\theta) = \frac{2D_{ds}}{D_d D_s c^2} \int \Phi(D_d \vec{\theta}, z) dz$$
(23)

$$\vec{\eta} = \frac{D_s}{D_d} \vec{\xi} - D_{ds} \vec{\alpha}(\vec{\xi})$$
(24)

$$\nabla_{\vec{\xi}} \hat{\phi}(\vec{\xi},\vec{\eta}) = 0$$
(25)

$$c(t_1 - t_2) = \hat{\phi}(\vec{\xi_1},\vec{\eta}) - \hat{\phi}(\vec{\xi_2},\vec{\eta})$$
(26)

профиль gNFW

$$\rho(r) = \frac{\rho_0}{\left(\frac{r}{R_s}\right)^{\gamma} \left(1 + \left(\frac{r}{R_s}\right)^{\alpha}\right)^{\frac{(\beta - \gamma)}{(\alpha)}}}$$
(27)
$$\nabla P = -\rho \nabla \Phi$$
(28)
$$p \sim \rho^{\Gamma}$$
(29)

профиль gNFW для наблюдаемых величин

$$P_{e}(r) = \frac{P_{0}}{\left(\frac{r}{r_{s}}\right)^{\gamma_{p}}\left(1 + \left(\frac{r}{r_{s}}\right)^{\alpha_{p}}\right)^{\left(\frac{\beta_{p} - \gamma_{p}}{\alpha_{p}}\right)}}$$
(30)

$$T(r) = \frac{T_{0}}{\left(\frac{r}{r_{s}}\right)^{\gamma_{p}\left(1 - \frac{1}{\Gamma}\right)}\left(1 + \left(\frac{r}{r_{s}}\right)^{\alpha_{p}}\right)^{\frac{\beta_{p} - \gamma_{p}}{\alpha_{p}}\left(1 - \frac{1}{\Gamma}\right)}}$$
(31)

$$\left(\int n_{e}^{2} dV\right)(r) = \int \frac{4\pi r^{2} dr}{\left(\frac{r}{r_{s}}\right)^{\frac{2\gamma_{p}}{\Gamma}}\left(1 + \left(\frac{r}{r_{s}}\right)^{\alpha_{p}}\right)^{\frac{2(\beta_{p} - \gamma_{p})}{\alpha_{p}\Gamma}}}$$
(32)

$$y(r) = 2\frac{P_{0}\sigma_{T}}{m_{e}c^{2}}\int_{r}^{\infty} \frac{R dR}{\left(\frac{R}{r_{s}}\right)^{\gamma_{p}}\left(1 + \left(\frac{R}{r_{s}}\right)^{\alpha_{p}}\right)^{\frac{\beta_{p} - \gamma_{p}}{\alpha_{p}}}\sqrt{R^{2} - r^{2}}}$$
(33)

Карта параметра комптонизации

Abell 85

Радиальный профиль параметра комптонизации

Применение профиля gNFW для параметра комптонизации

Параметры gNFW, полученные методом MCMC для y(r)

$R_{s}[\sigma]$	$\alpha[\sigma]$	$eta[\sigma]$	$\gamma[\sigma]$
$567.34^{+265.33}_{-243.18}$	$1.56^{+1.27}_{-0.54}$	$3.06^{+1.70}_{-1.12}$	$0.40^{+0.21}_{-0.20}$

Разбиение кластера Abell 85 на кольца

Радиальный профиль температуры

Применение профиля gNFW для температуры

Параметры gNFW, полученные методом MCMC для T(r)

Радиальный профиль нормы

Применение профиля gNFW для нормы

Параметры gNFW, полученные методом MCMC для $\int (n_e^2 dV)(r)$

$R_{s}[\sigma]$	$\alpha[\sigma]$	$rac{2\gamma}{\Gamma}[\sigma]$	$rac{2(eta-\gamma)}{lpha\Gamma}[\sigma]$
$532.51^{+115.59}_{-187.79}$	$1.29\substack{+2.07\\-0.89}$	$0.44_{-0.12}^{+0.08}$	$0.58^{+1.03}_{-0.75}$

Параметры gNFW, полученные методом МСМС для различных наблюдаемых

$$\begin{array}{|c|c|c|c|c|c|c|c|} R_{\mathsf{S}}[\sigma] & \alpha[\sigma] & \beta[\sigma] & \gamma[\sigma] \\ \hline 567.34^{+265.33}_{-243.18} & 1.56^{+1.27}_{-0.54} & 3.06^{+1.70}_{-1.12} & 0.40^{+0.21}_{-0.20} \\ \hline \end{array}$$

$R_{s}[\sigma]$	$\alpha[\sigma]$	$\gamma(1-rac{1}{\Gamma})[\sigma]$	$\frac{(\beta-\gamma)}{\alpha}(1-\frac{1}{\Gamma})[\sigma]$
$810.54^{+186.96}_{-248.81}$	$2.48^{+0.92}_{-1.02}$	$-0.03\substack{+0.06\\-0.08}$	$2.13^{+1.61}_{-1.10}$

$R_{s}[\sigma]$	$\alpha[\sigma]$	$rac{2\gamma}{\Gamma}[\sigma]$	$\frac{2(\beta-\gamma)}{\alpha\Gamma}[\sigma]$
$532.51^{+115.59}_{-187.79}$	$1.29^{+2.07}_{-0.89}$	$0.44_{-0.12}^{+0.08}$	$0.58^{+1.03}_{-0.75}$

$\gamma[\sigma]$	$eta[\sigma]$
$0.19^{+0.10}_{-0.24}$	$6.022_{-4.6923}^{+9.5392}$

Уточненные значения параметров gNFW, полученные методом MCMC

$R_{s}[\sigma]$	$\alpha[\sigma]$	$eta[\sigma]$	$\gamma[\sigma]$
$482.23^{+130.39}_{-142.05}$	$3.91^{+2.10}_{-1.50}$	$3.63^{+2.49}_{-1.21}$	$0.30\substack{+0.04\\-0.06}$

Радиальный профиль плотности темной материи

Радиальный профиль гравитационного потенциала

Радиальный профиль потенциала отклонения

